前序遍历是最简单的,每弹出一个节点,就将该节点的右节点、左节点分别入栈。
1
2
3
4
5
6
7
8
9
10
|
class Solution:
def preorderTraversal(self, root: TreeNode) -> List[int]:
st, res = [root], []
while st:
cur = stack.pop()
if cur is not None:
res.append(cur.val)
stack.append(cur.right)
stack.append(cur.left)
return res
|
中序遍历,对二叉搜索树,其实就是从小到大依序输出。对每个节点,先一直向左走,向左走到尽头就弹出并向右走一步,继续上面的步骤。
1
2
3
4
5
6
7
8
9
10
11
12
|
class Solution:
def inorderTraversal(self, root: TreeNode) -> List[int]:
st, res = [], []
cur = root
while st or cur is not None:
while cur is not None:
st.append(cur)
cur = cur.left
cur = st.pop()
res.append(cur.val)
cur = cur.right
return res
|
后序遍历,利用 pre
记录上一个访问过的结点,与当前结点比较,如果是当前结点的子节点,说明其左右结点均已访问,将当前结点出栈,更新 pre
记录的对象。
另一方面,它可以看成前序遍历“根、右、左”的逆序。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
class Solution:
def postorderTraversal(self, root: TreeNode) -> List[int]:
if root is None:
return []
st, res = [root], []
pre = None
while st:
cur = st[-1]
if (cur.left is None and cur.right is None) or \
(pre is not None and (pre is cur.left or pre is cur.right)):
res.append(cur.val)
pre = cur
st.pop()
else:
if cur.right is not None:
st.append(cur.right)
if cur.left is not None:
st.append(cur.left)
return res
|
以下为前序遍历逆序:
1
2
3
4
5
6
7
8
9
10
11
|
class Solution:
def preorderTraversal(self, root: TreeNode) -> List[int]:
st, res = [root], []
while st:
cur = stack.pop()
if cur is not None:
res.append(cur.val)
stack.append(cur.left)
stack.append(cur.right)
res.reverse()
return res
|